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Abstract—The results of a study of high Reynolds number convective heat transfer from a small heated

protrusion on a flat plate are presented. Protrusions of height ~L Re™** and length ~L Re™** are

analyzed in the context of triple-deck theory. An analytical solution for the local heat transfer rate is

presented for protrusions of vanishingly small heights. For protrusions of height ~1 on the triple-deck

scale, a numerical solution is obtained. The effect of boundary layer separation on the heat transfer rate

is investigated. It is found that flow separation leads to high local rates of heat transfer downstream of the
separation point.

1. INTRODUCTION

THIS INVESTIGATION considers high Reynolds number
convective heat transfer from a small heated pro-
trusion on a flat surface. This is a model to study the
cooling of electronic chips. The presence of a pro-
tuberance can produce significant local changes in the
flow past a flat plate and alter the local heat transfer
rates appreciably. If the size of the protuberance is
large, boundary layer separation may occur. The
induced mixing due to boundary layer separation may
result in a significant enhancement of heat transfer.
The flow structure in the vicinity of a small pro-
trusion located at a distance L from the leading edge
of a flat plate may be predicted by triple-deck theory
[1-3] if the streamwise length of the protrusion is
O(Le?) and its height is O(Le") where ¢ = Re™ /* [4].
The protrusion or hump may then be taken as an O(1)
disturbance within the lower deck of a triple-deck
structure. The presence of the hump results in a rapid
change in the boundary layer thickness. This dis-
placement effect produces first-order perturbations in
the inviscid region just outside the boundary layer
(upper deck) that interact with the viscous region
close to the hump (lower deck) via the main deck
(outer part of the boundary layer) to induce a stream-
wise pressure gradient which drives the lower deck
flow. The flow in the lower deck is described by the
boundary layer equations but with an induced press-
ure gradient which allows the flow to adjust upstream
of the hump. The wall boundary conditions are the
usual no-slip and kinematic boundary conditions, but
the condition at the outer edge of the lower deck
comes from matching to the rotational inviscid main
deck, rather than the irrotational inviscid upper deck.
The main deck is in turn matched to the upper deck
and thus plays the passive role of transmitting stream-
line displacement from the lower deck to the upper
deck and pressure perturbations from the upper deck
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to the lower deck. The triple-deck structure provides
a consistent description of this self-sustaining inter-
action between the induced pressure gradient and
streamline displacement. The importance of the triple-
deck scaling has been discussed in detail by Smith [4].

The induced pressure gradient may be adverse in
some regions, and, if large enough, may trigger off
boundary layer separation. Due to the quasi-elliptic
nature of the triple-deck pressure displacement inter-
action, the Goldstein singularity which appears in
classical boundary layer equations at separation does
not occur in the lower deck equations. Thus, small-
scale separated flows may be computed numerically,
using the triple-deck model.

The present investigation was restricted to pro-
trusions which fall into the triple-deck scale. The flow
over a small hump on a flat plate was first analyzed
in the context of triple-deck theory by Smith [4]. He
obtained linearized solutions for very small humps for
both subsonic and supersonic free streams. The non-
linear lower deck equations have been solved numeri-
cally by Sykes [5] using a finite difference method, and
Burggraf and Duck [6] by a pseudospectral method.

In the simple model considered in this paper, the
surface of the protrusion is assumed to be maintained
at a uniform temperature, T,, which is higher than
the temperature T, of the free stream, while the plate
is assumed to be held at a uniform temperature T,.
The wall temperature distribution is thus dis-
continuous at the leading and trailing edges of the
protrusion. The leading-order solution for tem-
perature does not have any upstream influence on the
triple-deck scale. Therefore, the singularity intro-
duced in the solution by the discontinuity in boundary
temperature is not smoothed out. It is expected that
the temperature profile ahead of the discontinuity will
be influenced only in a small region where axial con-
duction of heat is as important as transverse con-
duction [7, 8]. This is the region where x and y are of
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NOMENCLATURE

a displacement [unction

Ai Airy function of the first kind

d  displacement function in transformed
coordinates

! surface gecometry function

h height of protrusion

k thermal conductivity

L length from leading edge to center of
protrusion

Nu Nusselt number

P pressure

Pr Prandtl number

Q  total heat transfer rate from protrusion

Re  Reynolds number

T temperature

T, temperature of surface of protrusion

7 plate temperature

u x-component of veloeity
r y-component of velocity
wo transformed velocity

A\ axial coordinate

¥ transverse coordinale

- transformed transversc coordinate.

Greek symbols
o small parameter
7] transformed transversc coordinate
0] dimensionless iemperature
< axial coordinate measured from leading
edge of protrusion
¢y Fourier transform variablec.

0(c*), and is not considered in this paper. The lcading-
order solution for temperature prescnted here is not
valid if the wall temperature is continuous, that is, if
T, = T,. The results of this investigation arc appli-
cable to subsonic forced convection and combined
free—forced convection flows as the perturbation in
the buoyancy force does not appear in the leading-
order momentum cquation.

2. FORMULATION

The triple-deck flow structure is given in detail in
ref. [4] and will be described only briefly here. The
physical model is shown in Fig. |. We consider steady,
laminar, incompressible flow past a flat plate, on
which is situated a small protrusion at a distance L
from the leading edge of the plate. Cartesian coor-
dinates (¥, ) are chosen such that the leading edge is
given by ¥ = — L and the plate is 7 = 0. We introduce
dimensionless coordinates (v, v) = (¥/L, ¥/L) and
nondimensionalize the problem by writing the velocity
components in the ¥- and j-directions as it = 7, u.

y =y

UPPER DECK
X =xie’~ 1
Y=yt~
MAIN DECK
X~ 1
Y = y/’e" ~1
LOWER DECK
X =y X~ 1
yr=1" vt

T T Ty
Fi1G. 1. Physical model and coordinates.

i = i, r. respectively, the pressurcas j = j, + ipd.p.
and the temperature as (0= (T-T )Y(T,—-T,).
where i, is the flow speed far from the plate, p the
density of the fluid, 5, and T, respectively, the press-
ure and temperature of the free strcam, and T, the
surface temperature of the protrusion. The Reynolds
number defined by Re = &, L/v, where v is the kine-
matic viscosity of the fluid. is assumed to be large. It
is convenient to define a small parameter & = Re ",
Following Smith [4], we consider protrusions of
height of O(L&*) and the length of O(Le") with profiles
V=g hF(x/e’), where the function F is such that
hF(X) is of order one or less for all X = x/z7.

In the main deck, where X = x/e" and Y = y/e* are
the O(1) coordinates, the dependent variables arc
cxpanded as

u=Uy(Y)+eU (X Yy +-
p= VX Y)
p=aP(X.Y)+

0= Hy(Y)+eH (Y. Y)Y+ 1

It

where /,(Y) is the oncoming boundary layer vclocity
profile. and Hy(Y) the undisturbed boundary layer
temperature profile. Substitution of equations (1) into
the continuity. Navier-Stokes and energy equations
gives

cl, oV,

+ 0 =0
v Ty

U L
Uyt Y) (,iX' UV, =0

cP, —0
oy
oH
U.;(Y)(M,' FHL(Y)Y, = 0. )
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The solutions of the above equations may be written
as

U, = Ug(Y)A(X)
V= —Ug(Y)4'(X)

P =P (X)

H, = Hy()A(X) &)

where A(X) is a function which has to be determined
by matching.

The perturbed flow in the main deck does not match
with the flow outside the boundary layer as ¥ — o0,
and an ‘upper deck’ is needed to adjust the solutions
to the mainstream values. In the upper deck, where
$ = p/e’ and X are the relevant O(1) coordinates, we
expand the dependent variables as

u=1+e%, (X, p)+ -

v =, (X, )+
p=ep X, )+

f=el (X, 5+ 4

The inviscid irrotational equations of motion yield a
relation between P, (X) and A(X)

0 A/ \
P(X) = :Jv Xfxx? dx,. )

Equation (5) is a matching condition between the
main deck and the upper deck. The solution for 8, is
the trivial solution

g,

0. 6

This is not surprising, as the temperature per-
turbations in the main deck satisfy the outer boundary
condition as Y — 0.

The main-deck solution cannot satisfy the wall
boundary conditions and so a ‘lower deck’ is required
close to the solid surface, where X'and ¥ = y/¢° are the
O(1) coordinates. The perturbations to the upstream
boundary layer solution are no longer small in this
region, and the expansions take the form

u=gy'*u (x,p)+

v = 53}’3;41’1(%5}’1)'{“ ne

P = gzytfsz(xh)’x)‘F‘ "

O=A+(1=0 (x),y )+ (7N

where y = U(0) and x, = y”*X, y, = y¥*y/e® are
scaled coordinates defined for convenience, and
A= (T, —TH)(Ty—T,). We also define

a(x,) = y"A(X) &
and

Flx) =y FX). )
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The leading-order governing equations in the lower
deck are

0 v
du, du, dpy 2wy
o T T T T
Opi _
oy,
The boundary conditions are
wy=v,=0,0,=1 ony, =hf(x))
uy -y, +a(x;),0, -0 asy —w
= ynvnpn8i =0 asx; - —o. (1)

We now introduce the following transformations :
zy =y, —hf(x))
wy =uv,—hu, f{x;)
d, =a(x,)+hf(x)). (12)

Equations (10) remain unchanged in form, with z,

and w, replacing y, and v,, respectively. The bound-

ary conditions become
wy=w,=0,8,=1 onz,=0

uy =z, +di(x,) asz, - o

U, =z,v,p,0, >0 asx, - —oo.

(13)

The lower deck equations were solved numerically
for a quartic hump

forlx,| <1

X (l—' %)25
Fx) = { * (14)

0, for |x,| < 1’

An analytical solution for the wall heat-flux dis-
tribution was also obtained for humps of very small
heights, thatis for 2 « 1.

3. LINEARIZED SOLUTION FOR THE WALL
HEAT FLUX

For & « 1, the lower deck equations may be lin-
earized by expanding the variables as

uy =z, +huy, +0h)

vy = hl)] 1 +0(h2)
pi=hp +0h?)
0, = 8,,+00). (15)

The linearized solution for the flow is given in ref. [4].
Here, we obtain a linearized solution to the lower deck
energy equation. The O(1) problem for temperature in
the lower deck is
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aoy, | &0y,
ox, T Proés)
o—l<y <
atz, =0, 0, =
e =0 0=, S
asz - . 0,-0
asx, - —x. 0, -0, (16)
[t is obvious that 0, =0 for x, < —1. Since there

is no upstream influence on ¢,,. a solution may be
obtained by using a Laplace transform with respect
to x ;. The result for the wall temperature gradient is
a0y,

A (x,,0)

=1
(04 forx, < —1
AP Q)Y Pr!?
['(2/3)A4i(0)
for =1 < x, <1

AT (O)Pr' Y
F(2/3)4i(0)

for x; > 1

(x,+ 1 "

[(vi+H e, - YL

(17)

where Ai1s the Airy function of the first kind.

Equation (17) indicates that the wall heat-flux dis-
tribution is singular at the points x, = %1, that is, at
the leading and trailing edges of the hump. At the
leading edge x, = —1, the thermal boundary layer
has zero thickness. Therefore, the wall heat flux is
infinite. This implies the existence of a small region
near the leading edge where axial conduction of heat
cannot be neglected [7, 8]. The thermal boundary layer
near the trailing edge v, = 1 has a double structurc.
Due to the sudden change in boundary temperature
at x, =1 there cxists a thin sublayer of thickness
O((x, —1)""*) near the wall where the temperature
gradient in the transverse direction is large.

4. THE NUMERICAL METHOD

The leading-order velocity perturbations in the
lower deck were computed by a hybrid spectral finite-
difference method. The solution procedure is based
on that of Burggraf and Duck [6]. The pressure gradi-
ent term in the momentum equation is eliminated by
differentiating it with respect to z. and the solution
variables are split into two components. namely, that
corresponding to uniform shear (i, = z,) and a per-
turbation componcnt. We also map the semi-infinite
interval 0 <z, < » to a finite interval by a trans-
formation =, = ¢(7). The resulting transport cquation
for the perturbation shear stress 1s then transformed
from physical to spectral variables using the Fourier
integral transform in x,. This yields

A A g'(ty ot*

O o g —ieg() = R

Tlgor o o
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where

| Ca,

T= , - . . i9

gty ci )
Here, perturbation components are denoted by a tilde,
while an asterisk denotes a transformed variable. c.g.

Hw, 1) = J Tx.ne " dy (20)

The boundary conditions applied to equation (18) are

at =0,

~
[

- —1m|wlg’(H) [/1‘/"*((1))“ ‘ T, 1) dr’ {
( Ju N

ast o1, T 0. (21
This system of cquations was solved by a finite-differ-
ence method. Central differences were applied on the
t-derivatives in equation (18). The /-derivative in the
interaction condition in equation (21) was replaced
by a three-point backward difference formula. Quad-
ratures were evaluated using the trapezoidal rule. The
function g(r) was taken to be

!

1) = . (22

g =, _, )

Uniform steps At =, /(J—1) in 1, where J is the

number of points in the t-direction, correspond to

non-uniform steps Az, in ;. Transformation (22) has

the property that points arc concentrated close to the

solid boundary z, = 0. The grid spacings Aw and Ax,
were chosen to satisfy the relation

2n )

Ax Aw = i (23)

where K is the number of points in the x,-direction.
The range of x, was truncated to

X T
-, Ax, € x < (2 --1 )A.\‘]

while the range of «w was truncated to

) Aw.

- IgAm << <I: — 1

Relation (23) allows fast transformation of vari-
ables from the physical space to spectral space, and
vice versa, using the fast Fourier transform technique
of Cooley and Tukey [9]. Aliasing crrors in the evalu-
ation of the convolution product R* were removed
by padding or truncation [10].

After several trials, 1, was fixed at 0.95 and Ax was
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set to 0.0625. J and K were taken to be 61 and 512,
respectively.

Since the wall boundary temperature is dis-
continuous, its discrete Fourier transform exhibits the
Gibbs phenomenon. To avoid this problem, the lower
deck energy equation was solved in the physical
plane. The leading-edge singularity was removed by
the following transformation :

EZX|+1

y

0=z (24)
<

In (&, n) coordinates, the lower deck energy equation

has the form

¥y, % + (5’-’317~ %) %(-1‘ = }—i; 5;); . ©5)
The boundary conditions are
I, 0<¢éK2
at 5 =0, 9,:{0’ £>2
as y-—o0, 8, =0 (26)
At & = 0, equation (25) reduces to
?.2& To Pr Zflalz() 7N

on* 3 1 oy
where 1, is the wall shear stress at £ = 0. The initial
conditions for equation (25) were generated by solving
equation {27) subject to boundary conditions (26).

Equation (25) was solved by a finite-difference
method. The interval 0 < # < o0 was mapped to the
finite interval 0 << | by equation (22). The
derivatives were discretized by central differences,
while the ¢-derivative in equation (25) was approxi-
mated by a two-point upwind difference scheme. For
flows without separation, the upwind difference
scheme is equivalent to a backward difference scheme,
and the solution is obtained in a single sweep by
marching from ¢ = 0. For separated flows, several
sweeps in the é-direction are required.

The numerical solution obtained is not accurate
near ¢ = 2 because of the discontinuity in boundary
temperature, The thermal boundary layer near & = 2
has a double structure, as indicated by the linearized
solution. For flows without separation, this singu-
larity may be accounted for by a two-region method
[11, 12]. For flows with separation, however, this two-
region method fails [12], and hence was not used in
this investigation. The numerical results obtained for
the local heat transfer rate for the limiting case & = 0
were compared with the analytical result given by
equation (17) in Fig. 2 for Pr = 1. As expected, the
computed solution differs from the exact solution in
the region downstream of the trailing edge x,.
However, the error introduced by the trailing edge
singularity decays rapidly with distance downstream
of the trailing edge, and the exact solution is re-
covered.
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Fi16. 2. Comparison of numerical solution for 4 =0 with
analytical solution.

5. RESULTS AND DISCUSSION

Numerical results were obtained for the quartic
hump {equation (14)) for hump heights £/ = 0.1, { and
3. Details of the main-deck displacement, induced
pressure and wall shear stress are presented in Figs.
3-5. Results for the heat transfer rates are presented
for Pr = 0.7 (air) and 8 (water) in Figs. 6 and 7.

The main-deck displacement d,{x,) is plotted in
Fig. 3. Figure 3 shows that the main-deck flow deceler-
ates ahead of the hump, reaching a minimum near the
leading edge, and then accelerates along the rising
portion of the hump from the leading edge to the
crest, where the slope is positive. The peak of the
displacement d,(x,) occurs at the crest x, =0 for
h = 0.1. For humps of larger heights, the peak of the
displacement function occurs slightly ahead of the
crest x, = 0 due to the non-linear convection effect in
the lower deck. On the leeward side of the hump, the
flow decelerates rapidly to a minimum at the trailing
edge. Beyond the trailing edge, the flow accelerates
again, and the displacement function 4,(x,) ap-
proaches zero asymiptotically from below. The range
of upstream and downstream influence increases
as h increases.

The induced pressure distribution is shown in
Fig. 4. As expected, a favorable pressure gradient is
developed in regions where the main-deck flow accel-
erates, while an adverse pressure gradient is developed
in regions where the flow decelerates. Thus, the press-
ure rises gradually upstream of the hump to a
maximum near the leading edge, and then decreases
rapidly along the windward side of the hump, falling
below the free-stream value to a minimum at the crest
of the hump. On the leeward side of the hump, the
pressure rises rapidly, overshooting the free-stream
level, and then decreases asymptotically to zero from
above far downstream of the hump. The induced press-
ure perturbations are larger for humps of larger
heights. Figure 4 indicates that the most likely place
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F1G. 3. Main-deck displacement.

for separation to occur is the downstream end of the
hump where the induced adverse pressure gradient is
greatest. This is confirmed by the wall shear-stress
distribution (Fig. 5).

Figure 5 shows the wall shear—stress distribution.
Upstream of the hump, the wall shear-stress decreascs
as the flow decelerates, to a minimum at the leading
edge. Beyond the leading edge, the wall shear- stress
rises drastically as the flow accelerates, reaching a
maximum slightly ahead of the crest of the hump, and
then decreases as the flow decelerates, to a minimum
ncar the trailing edge of the hump. Beyond the trailing
edge, the shear—stress increases and asymptotically
approaches the unperturbed boundary layer solution
from below. For /i = 3. the flow separates on the Ice-

ward side of the hump, and there is a region of nega-
tive shear-stress inside the separation bubble. The
curve for # =3 indicates that the flow separates
around x, = (.5 and rcattaches at v, = |.8.

Figure 6(a) shows the variation ol the local heat
transfer ratc at the wall for Pr = 0.7. The local Nussclt
number, defined in terms of 7y — T, . the thermal con-
ductivity k and the length L, can be expressed as
it Ny +

Nu=z¢ 7y (28)

wherc

05

0.0
T 0.5 F
(=%

-1.0 +

X, — =

F1G. 4. Pressure distribution.
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F1G. 5. Wall shear-stress distribution.

o)
2
»
wp h=3
A=l
R0
(a) . 5
A
o
~
3
kS h=3
pvy
hat
ha0%
i
(b 4 5

F1G. 6. (a) Local heat transfer rate for Pr = 0.7. (b) Local
heat transfer rate for Pr = 8,

is obtained from the lowest order energy equation
in the lower deck. Equation (29) indicates that
Nu, ~ &3 near ¢ =0. For humps of very small
heights, equation (17) predicts that ¢ Nu, is con-
stant along the surface of the hump, that is, in the
region @ < £ < 2. Thus, the axial variation of £'° Nu,
has been plotted in Fig. 6(a), rather than the variations
of Nu,. As expected, £'° Nu, is very nearly constant
in the region 0 < & < 2 for & = 0.1. As the height 4 of
the protrusion is increased, the flow decelerates ahead
of the protrusion and heat is convected away from the
surface at a slower rate near the leading edge. The
values of £¥° AN, for £ = 1 and 3 at the leading edge
¢ =0 are, therefore, lower than the corresponding
value for 2 = 0.1. The curves for & = 1 and 3 show
that as the fluid accelerates along the ‘windward’ side
of the hump, the local heat transfer rate increases
above the flat-plate value to a maximum slightly ahead
of the center of the protrusion and decreases to a local
minimum near the trailing edge as the fluid decelerates
along the leeward side of the hump. For £ = 1, the
minimum occurs at the trailing edge & = 2. For 2 = 3,
the flow separates ahead of the trailing edge and the
minimum occurs upsitream of the trailing edge, at the
separation point, where the local flow is similar to a
reverse-stagnation point flow. Just downstream of the
separation point, the local wall heat transfer rate rises
rapidly as the mixing of cold fluid with hot fluid
induced by the recirculating eddy carries away heat
from the surface at a faster rate. All the curves show
a discontinuity in the wall heat flux at the trailing
edge £ =2 due to the sudden step change in wall
temperature. Downstream of the trailing edge, the
wall heat flux changes sign as the hot fluid now trans-
fers heat to the cooler wall. The magnitude of the wall
heat flux is high near the trailing edge. The trailing
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F16. 7. (a) Total heat transfer rate from surface of protrusion
for Pr=0.7. (b) Total heat transfer rate from surface of
protrusion for Pr = 8.

edge itself is a singular point, and for flows without
separation, the wall heat flux is infinite at that point.
Far downstream of the trailing edge, the wall heat flux
decays algebraically to zero, as the thermal boundary
layer grows in thickness.

Figure 6(b) shows the variation of the local heat
transfer rate for Pr = 8. The curves follow the same
trend as in Fig. 6(a). The magnitude of the local heat
transfer rates are, however, larger for Pr = 8, as the
thermal boundary layer is thinner and the temperature
gradients at the wall are larger.

The total heat transfer rate, g, from the surface of

me prOIrusmn can DC omameu Uy mlcgrdung equa-
tion (29). Tt may be expressed as

rs)
¥ 240
T =8 + (30)
K(T,—T),) &
wherce
Q= f Nu,(¢) dé. (31

s

Figure 7(a) plots Q, as a function of the hump height
4 for Pr = 0.7. It is seen that as /i increases £ incicascs
to a maximum value around # = 1.25 and then
decreases. This may be explained by referring to the
local wall heat flux distribution (Fig. 6(a)). As the
height of the protrusion is increased, the local heat
transfer rates increase on the windward side of the
hump (except in a small region close to the leading
edge) as the flow accelerates and convects heat away

Foumann than
from the surface at a faster rate. However, the local

heat transfer rates decrease on the leeward side of
the hump as the flow decelerates, falling below the
corresponding values for a flat plate. For protrusions

S. G. Mounic and L. S. Yao

with
t

heichis 7 < 125, thencte
wilh neignls 1€

in the total heat transfer rate. l~0r humps of larger
heights. the adverse pressure gradient induced on the
leeward side of the hump slows down the flow to such
an extent that the local heat transfer rates decrease
considerably in that region. This leads to a decrease
in the total heat transfer rate. The total heat transfer
rate reaches a local minimum at /1 ~ 3.0. The flow first

separates at 1~ 1.9 The re
Cparaiwes at e

nitially very small, and the fluid in the recirculating
region moves very slowly. Heat transfer in this almost
stagnant region 1s mainly by conduction. Locally, the
separated region acts like an insulating layer, and the
heat transfer rates are reduced. As A is increased., the
size of the separated region increases and the fluid in
the recirculating region begins to move faster. For
I > 3.0, the induced mixing caused by the recir-
culation of fluid in the separated region leads to an
increasc in the total heat transfer rate. Sinee the cur-
rent model 1s valid only for small-scale separation, the
significance of the heat transler enhancement due to
the mixing induced by flow separation cannot be fully
elucidated. The results, however, indicate the trend
clearly. The enhancement of heat transfer duc to
more ¢ u,guly IlI l 1‘

with 7/ Im

vt Addes launr grmaratime 1o onnm
uuunual_y lclyLl \L‘JdlaLl\lll I> dLuil
7(b), which shows thc variation of {J,
Pr=28.
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Heat transfer near a small heated protrusion on a plate

TRANSFERT THERMIQUE AUTOUR D'UNE PETITE PROTUBERANCE CHAUDE
SUR UNE PLAQUE

Résumé—On présente les résultats d’une étude 4 nombre de Reynolds élevé du transfert thermique convectif

autour d’une petite protubérance chaude sur une plague plane. On analyse des excroissances de hauteur

~ L Re™*® et de longueur ~L Re™*® Une solution analytique pour le transfert thermique est présentée

pour des protubérances de hauteur extrémement petite. Pour des hauteurs ~ 1 sur I’échelle de triple pont,

on obtient une solution numérique. L’effet de la séparation de la couche limite sur le flux thermique

transféré est étudié. On trouve que la séparation de I’écoulement conduit a des flux thermiques élevés en
aval du point de séparation.

WARMEUBERTRAGUNG IN DER UMGEBUNG EINER KLEINEN ERHEBUNG AUF
EINER PLATTE

Zusammenfassung—Der konvektive Wirmeiibergang bei hohen Reynolds-Zahlen an einer kleinen

beheizten Erhebung auf einer ebenen Platte wird untersucht. Mit Hilfe der “Triple-Deck-Theory™ werden

Erhebungen der Héhe ~ L Re~%® und der Linge ~ L Re~¥* analysiert. Eine analytische Lésung fiir

den ortlichen Wirmeiibergang wird fiir den Fall einer verschwindend kleinen Héhe der Erhebung vor-

gestellt. Fiir Erhebungen der relativen Héhe ~ 1 wird eine numerische Ldsung ermittelt. Der EinfluB

einer Grenzschichtablosung auf den Wirmeiibergang wird untersucht, wobei sich stromab vom Abldsungs-
punkt besonders hohe 6rtliche Warmetiibergangskoeffizienten ergeben.

TEILJIOITEPEHOC OKOJIO HEBOJBIIOI'O HAI'PEBAEMOI'O BBICTVIIA HA IJIACTUHE

Asmmoranus—IIpescTaBieHs! Pe3yJIbTATH MCCIEAOBAHAS KOHBEKTHBHON TEILIOOTNAYH OT HEGOJBIIOTO
HAarpeBaeMOro BLICTYNIA Ha ILIOCKOH ILIACTHHE NIPH BHICOKHX YnCiax PeiiHonsaca. C HCIOMb30BaHHEM
TEOPHH TPeX YPOBHEH aHANASHPYIOTCA BHICTYNBE BHICOTOH ~ L Re™3/® u mmmno#t ~ L Re™¥®. Ipemno-
KEHO AHAJIMTHYECKOE DelIeHHe IS JIOKATLHOH HHTEHCHBHOCTH TEIUIOOTAAYH IUIA BLICTYNOB C HCYe-
3arolle Maioit BhICOTOM. [N BHICTYNOB BEICOTOH# ~ | B H3MepeHHOM MaciuTabe TEOPHHM TPEX YpOBHEH
HOJIYYeHO MHCIeHHOe pemenne. Mccnenyercs BIEsAHHE OTPHIBA NOTPAHHMHOrO CNOS HA HHTEHCHBHOCTD
Terutonepenayd. HaiifieHo, YTO OTPHB NOTOKA NPHBOAMT K BEICOKOi JIOKRJILHON HHTEHCHBHOCTH TEILIO-
nepeayd BHH3 IO TEYEHHIO OT TOYKH OTPHIBA.
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