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Abstract-The results of a study of high Reynolds number convective heat transfer from a small heated 
protrusion on a flat plate are presented. Protrusions of height -L Re-‘!’ and length -L RF”’ are 
analyzed in the context of triple-deck theory. An analytical solution for the local heat transfer rate is 
presented for protrusions of vanishingly small heights. For protrusions of height - 1 on the triple-deck 
scale, a numerical solution is obtained. The effect of boundary layer separation on the heat transfer rate 
is investigated. It is found that flow separation leads to high local rates of heat transfer downstream of the 

separation point. 

1. INTRODUCTION 

THIS INVESTIGATION considers high Reynolds number 
convective heat transfer from a small heated pro- 
trusion on a flat surface. This is a model to study the 

cooling of electronic chips. The presence of a pro- 
tuberance can produce significant local changes in the 
flow past a flat plate and alter the local heat transfer 
rates appreciably. If the size of the protuberance is 

large, boundary layer separation may occur. The 
induced mixing due to boundary layer separation may 
result in a significant enhancement of heat transfer. 

The flow structure in the vicinity of a small pro- 
trusion located at a distance L from the leading edge 
of a flat plate may be predicted by triple-deck theory 
[l-3] if the streamwise length of the protrusion is 
O(LE~) and its height is 0(L.s5) where E = Rem “’ [4]. 
The protrusion or hump may then be taken as an O( 1) 
disturbance within the lower deck of a triple-deck 
structure. The presence of the hump results in a rapid 
change in the boundary layer thickness. This dis- 

placement effect produces first-order perturbations in 
the inviscid region just outside the boundary layer 

(upper deck) that interact with the viscous region 
close to the hump (lower deck) via the main deck 
(outer part of the boundary layer) to induce a stream- 
wise pressure gradient which drives the lower deck 
flow. The flow in the lower deck is described by the 
boundary layer equations but with an induced press- 

ure gradient which allows the flow to adjust upstream 
of the hump. The wall boundary conditions are the 
usual no-slip and kinematic boundary conditions, but 
the condition at the outer edge of the lower deck 
comes from matching to the rotational inviscid main 
deck, rather than the irrotational inviscid upper deck. 
The main deck is in turn matched to the upper deck 
and thus plays the passive role of transmitting stream- 
line displacement from the lower deck to the upper 
deck and pressure perturbations from the upper deck 

to the lower deck. The triple-deck structure provides 
a consistent description of this self-sustaining inter- 

action between the induced pressure gradient and 

streamline displacement. The importance of the triple- 
deck scaling has been discussed in detail by Smith [4]. 

The induced pressure gradient may be adverse in 

some regions, and, if large enough, may trigger off 
boundary layer separation. Due to the quasi-elliptic 
nature of the triple-deck pressure displacement inter- 

action, the Goldstein singularity which appears in 
classical boundary layer equations at separation does 
not occur in the lower deck equations. Thus, small- 
scale separated flows may be computed numerically, 

using the triple-deck model. 
The present investigation was restricted to pro- 

trusions which fall into the triple-deck scale. The flow 
over a small hump on a flat plate was first analyzed 

in the context of triple-deck theory by Smith [4]. He 
obtained linearized solutions for very small humps for 
both subsonic and supersonic free streams. The non- 
linear lower deck equations have been solved numeri- 
cally by Sykes [S] using a finite difference method, and 
Burggraf and Duck [6] by a pseudospectral method. 

In the simple model considered in this paper, the 

surface of the protrusion is assumed to be maintained 
at a uniform temperature, T,,, which is higher than 
the temperature r, of the free stream, while the plate 
is assumed to be held at a uniform temperature T,. 
The wall temperature distribution is thus dis- 
continuous at the leading and trailing edges of the 
protrusion. The leading-order solution for tem- 
perature does not have any upstream influence on the 
triple-deck scale. Therefore, the singularity intro- 
duced in the solution by the discontinuity in boundary 
temperature is not smoothed out. It is expected that 
the temperature profile ahead of the discontinuity will 
be influenced only in a small region where axial con- 
duction of heat is as important as transverse con- 
duction [7, 81. This is the region where x and y are of 
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NOMENCLATURE 

displacement function 
Airy function of the first kind 
displacement function in transformed 

coordinates 
surface geometry function 
height of protrusion 
thermal conductivity 

length from leading cdgc to center ol 
protrusion 

Nussclt nllmbc~~ 

pressure 
Prandtl number 

total heat transfer rate from protrusion 
Reynolds numhci 

tcmpcrature 
tempct-ature of surface of protrusion 

I‘, plate tcmpcraturc 
I, .I--component of velocity 
I‘ I.-coniponcnt of \clocit> 
II’ transformed vclocit) 
.\ axial coordinate 

.I’ transverse coordinate 
- transformed tronsversc coordinate 

Cirock symbols 
:: small paramctcl 

‘/ transformed transver<c coordinate 
0 dimcnsionlcss temperature 

< axial coordinate measured from leading 
edge of protrusion 

(‘, Fourier transform variable. 

O(c”). and is not considered in this paper. The Icading- 
order solution for temperature prescntcd here is not 

\,alid if the wall tcmpcrature is continuous, that IS, if 
T, = T,,. The results of this investigation arc appli- 
cable to subsonic forced convection and combined 
frceforced convection flows as the perturbation in 
the buoyancy force does not appear in the Icading- 
order momentum equation. 

2. FORMULATION 

The triple-deck flow structure is given in detail in 
ref. [4] and will be described only briefly here. The 
physical model ia shown in Fig. I. WC consider steady, 
laminar. incompressible flow past a Hat plate. on 
which is situated a small protrusion at a distance I2 
from the leading edge of the plate. Cartesian coor- 
dinates (.\1. v) arc chosen such that the leading cdgc is 
given by .\: = - I, and the plate is J = 0. WC introduce 
dimensionless coordinates (_v, .L.) = (.$;‘I_, j:L) and 
nondimcnsionalizc the problem by writing the velocity 
components in the .\-- and T-directions as Ir = ii, II. 

y = Y/L 

t 

I 
/ UPPERDECK 

TI To T, 
FIG. I. Phykel model and coordinates 

? : 17, r.. rcspcctivcly, the prcssurc as /I = /7, _t- $N) p. 
and the temperature as 0 = (T- 7‘, ):(r,, - 7‘, ). 
where 6, is the flow speed far from the plate. p the 

density of the fluid, p, and f, rcspcctivcly, the prcss- 
ure and temperature of the free stream, and 7’,, the 
s~~rfacc temperature of the protrusion. The Reynolds 

number defined by Rr = ii, 1,:~. bhcre I’ is the kino- 
matic viscosity of the fluid. is assumed to be large. It 
is convenient to dcfinc a small parameter 2: = Xc ’ ‘. 
f;ollouing Smith [4], WC cons&r protrusions oi 
height ofO(I,I:‘) and the length of O(,!J:‘) with profiles 
I’ = r:‘hF’(.~/r:‘). where the function F is such that 
/IF(X) is of order one or less for all X = .yx ‘. 

In the main deck, where X = .I-.(:’ and Y = j.‘<:’ arc 
the O(l) coordinates. the dcpcndcnt variables arc 
cxpandcd as 

L, = c’,,(Y)f::C~,(X’. j’)+ 

(’ = i:~ I”, (,~. v) + 

p’:::P,(,Y. z’)-!-,.. 

0 = /I,,(Y)+cH,(.Y. Y)$ “. iI) 

where [ ‘,I( 1’) is the oncoming boundary layer \clocit) 
profile. and H,,(Y) the undisturbed boundary layer 
tcmperaturc profile. Substitution ofequations (I) into 
the continuity. NavierGjtokes and energy equations 
givcz 

cc’, iI-, 

ix t i 2’ 
= 0 

^ / 
c’,,( Y)‘;‘! + r;;,( Y) I’, - 0 

iP, 

C-Y 
= 0 

ifl, 
ri,c Y) i y +N;,( Y)I’, = 0. (2) 
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The solutions of the above equations may be written 
as 

u, = Uk(Y)A(X) 

Y, = - ~~(Y)~‘(~) 

p, = Pl(J-? 

w, = H’,(Y)A(X) (3) 

where A(X) is a function which has to be determined 
by matching. 

The perturbed flow in the main deck does not match 
with the flow outside the boundary layer as Y --) co, 
and an ‘upper deck’ is needed to adjust the solutions 
to the mainstream values. In the upper deck, where 
?; = y/s3 and X are the relevant O( 1) coordinates, we 
expand the dependent variables as 

u= lfC%,(X,j’)S’~’ 

2’= &%,(X,p)+... 

p = &2fi,(X,~)+... 

B = EO^,(X,_$))+.“. (4) 

The inviscid irrotational equations of motion yield a 
relation between P,(X) and A(X) 

= P,(x)=; _,X-_h 
f 

A’@,) dx 

-1 
I PI 

Equation (5) is a matching condition between the 
main deck and the upper deck. The solution for f?, is 
the trivial solution 

e, = 0. (6) 

This is not surprising, as the temperature per- 
turbations in the main deck satisfy the outer boundary 
condition as Y -+ co. 

The main-deck solution cannot satisfy the wall 
boundary conditions and so a ‘lower deck’ is required 
close to the solid surface, where Xand Y = y/s5 are the 
U(I) coordinates. The perturbations to the upstream 
boundary layer solution are no longer small in this 
region, and the expansions take the form 

U = cy’~%,(x,,y,)f~~. 

1, = E3y”!4~,(x,,y,) + . . . 

p= “2yt~2p,(“l,y,)f~‘~ 

u= n4(1-~)8,(x,,y,)+... (7) 

where y = U&(O) and x1 = ysi4X, J’, = ~“/~y/s’ are 
scaled coordinates defined for convenience, and 
1= (T, - T,)/(T,,- r,). We also define 

a(x,) = y3i4A(X) (8) 

and 

,f(x,) = Y3’4F(x). (9) 

The leading-order governing equations in the lower 
deck are 

The boundary conditions are 

U, = v, = O,O, = 1 ony, = hf(x,) 

ui +Y,ia(x,),O* -+O as,v, + ~13 

u1 -“Ylrri~PI? 0, -+O asx, + --co. (11) 

We now introduce the following transformations : 

21 =Yl -hf(x,) 

M’, = 0, -huJ(x,) 

d, = a(x,)+hf‘(x,). (12) 

Equations (10) remain unchanged in form, with z, 
and w, replacing yi and u,, respectively. The bound- 
ary conditions become 

U, = w, = O?f?, = I on 2, = 0 

ui = Z, +d,(x,) as 2, -+ co 

u, =z,,u,,p,,0, -0 asx, -+ --oo. (13) 

The lower deck equations were solved numerically 
for a quartic hump 

(1 -x:)2, 
“f-(x,) = () L for lx,] < I 

for 1x,( < 1 (14) 

An analytical solution for the wall heat-flux dis- 
tribution was also obtained for humps of very small 
heights, that is for h CC 1. 

3. LINEARIZED SOLUTION FOR THE WALL 

HEAT FLUX 

For h CC 1, the lower deck equations may be lin- 
earized by expanding the variables as 

UI = z, fhu,, +O(h2) 

0, =hu,,+O(hZ) 

Pi =~Pii+~(~*) 

B, = H,,+O(h). (15) 

The Iinearized solution for the flow is given in ref. [4]. 
Here, we obtain a linearized solution to the lower deck 
energy equation. The 0( 1) problem for temperature in 
the lower deck is 
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where 

as Y, + --%. (I,, +o. (16) 

It is obvious that II,, = 0 for .Y, d - I. Since there 
is no upstream influence on 0, , . ii solution ma) bc 
obtained by using a Laplacc transform with respect 
to X, The result for the wall temperature gradient is 

I for.x-, > I (17) 

where Ai is the Airy function of the tirst kind. 

Equation (17) indicates that the wall heat-flux dis- 
tribution is singular at the points .Y, = 5 1. that is. at 
the leading and trailing edges of the hump. At the 
leading edge .Y, = - I, the thermal boundary Iaye 
has zero thickness. Therefore, the wall heat flux is 
infinite. This implies the existence of a small region 

near the leading edge where axial conduction or heat 
cannot be neglected [7,8]. The thermal boundary layer 
near the trailing edge .Y, = I has a double structure. 
Due to the sudden change in boundary temperature 
at .Y, = I there exists a thin sublayer of thickness 
O((u, -I)’ ‘) near the wall whet-c the tempcraturc 
gradient in the transverse direction is large. 

4. THE NUMERICAL METHOD 

The leading-order velocity perturbations in the 
lower deck were computed by a hybrid spectral finite- 
diffcrencc method. The solution procedure is based 
on that of Burggraf and Duck [6]. The pressure gradi- 
cnt term in the momentum equation is eliminated by 
differentiating it with respect to :. and the solution 
variables arc split into two components. namely, that 
corresponding to uniform shear (11, = z,) and a pcr- 
turbation component. We also map the semi-infinite 
interval 0 < r, cc x to a finite interval by a trans- 
formation I, = g(t). The resulting transport equation 
for the perturbation shear stress is then transformed 
from physical to spectral variables using the Fourier 
integral transform in .t , This yields 

I 
*, ‘* 
( -z a”(r) if* 

[y’(t)]’ it’ [,q’(t)]’ ir 
-iiu!c/(/)f* = R* (IX) 

Here, perturbation components are denoted by a tilde. 
white an asterisk denotes a translhl-mcd variable. e.g. 

i*(tu. I) = J’, ?(.\_. f) c “‘I d.\-. (30) 

The boundary conditions applied to equation (IX) arc 

at I = 0. 

as I + t,. ?* -4 0. (21) 

This system ofcquations was sotkcd by a finite-dift‘cr- 
cncc method. Central diffcrenccs Lvere applied on the 
/-derivatives in equation (I 8). The r-derivative in the 
interaction condition in equation (21) was reptaccd 
by a three-point backward difference formula. Quad- 
ratures were evaluated using the trapezoidal rule. The 
function 61(t) was taken to be 

S(f) = l I ,’ (22) 

Uniform steps A/ = t, ;(.I- I) in 1. where J IS the 
number of points in the t-direction. correspond to 
non-uniform steps A:. in z,. Transformation (22) has 
the property that points arc concentrated close to the 
solid boundary I, = 0. The grid spacings Aw and A..\-, 
were chosen to satisfy the rctation 

A.\:, A(!, = ; (23) 

where K is the number of points in the .u,-direction. 
The range of .Y, was truncated to 

while the range of (,) was truncated 10 

Relation (23) allows fast transformation of vari- 

ables from the physical space to spectral space. and 
vice versa, using the fast Fourier transform technique 
of Cooley and Tukey [9]. Aliasing errors in the evalu- 
ation of the convolution product R* were removed 
by padding or truncation [IO]. 

After several trials, f, was fixed at 0.95 and A.\ wax 
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set to 0.0625. J and K were taken to be 61 and 512, 
respectively. 

Since the wall boundary temperature is dis- 
continuous, its discrete Fourier transform exhibits the 
Gibbs phenomenon. To avoid this problem, the lower 
deck energy equation was solved in the physical 
plane. The leading-edge singularity was removed by 
the following transformation : 

5=x,+1 

Y 
“‘F’ (24) 

In (5, q) coordinates, the lower deck energy equation 
has the form 

The boundary conditions are analytical solution. 

at yI = 0, 5. RESULTS AND DISCUSSION 

as q-+co, B,=O. 

At 5 = 0, equation (25) reduces to 

(26) 

where z0 is the wall shear stress at t = 0. The initial 
conditions for equation (25) were generated by solving 
equation (27) subject to boundary conditions (26). 

Equation (25) was solved by a finite-difference 
method. The interval 0 < 4 < vz was mapped to the 
finite interval 0 < t < 1 by equation (22). The t- 
derivatives were discretized by central differences, 
while the t-derivative in equation (25) was approxi- 
mated by a two-point upwind difference scheme. For 
flows without separation, the upwind difference 
scheme is equivalent to a backward difference scheme, 
and the solution is obtained in a single sweep by 
marching from r = 0. For separated flows, several 
sweeps in the r-direction are required. 

The numerical solution obtained is not accurate 
near 5 = 2 because of the discontinuity in boundary 
temperature. The thermal boundary layer near 5 = 2 
has a double structure, as indicated by the linearized 
solution. For flows without separation, this singu- 
larity may be accounted for by a two-region method 
11 I, 121. For flows with separation, however, this two- 
region method fails ]12], and hence was not used in 
this investigation. The numerical results obtained for 
the local heat transfer rate for the limiting case h = 0 
were compared with the analytical result given by 
equation (17) in Fig. 2 for Pr = 1. As expected, the 
com~utcd solution differs from the exact solution in 
the region downstream of the trailing edge x,. 
However, the error introduced by the trailing edge 
singularity decays rapidly with distance downstream 
of the trailing edge, and the exact solution is re- 
covered. 

2.0 

1.2 

-1.2 

0 1 2 3 4 5 

t- 

FIG. 2. Comparison of numerical solution for h = 0 with 

Numerical results were obtained for the quartic 
hump (equation (14)) for hump heights h = 0.1, 1 and 
3. Details of the main-deck displacement, induced 
pressure and wall shear stress are presented in Figs. 
335. Results for the heat transfer rates are presented 
for Pr = 0.7 (air) and 8 (water) in Figs. 6 and 7. 

The main-deck displacement d,(x,) is plotted in 
Fig. 3. Figure 3 shows that the main-d~k flow deceler- 
ates ahead of the hump, reaching a minimum near the 
leading edge, and then accelerates along the rising 
portion of the hump from the leading edge to the 
crest, where the slope is positive. The peak of the 
displacement d,(x,) occurs at the crest xi = 0 for 

h = 0.1. For humps of larger heights, the peak of the 
displacement function occurs slightly ahead of the 
crest xi = 0 due to the non-linear convection effect in 
the lower deck. On the leeward side of the hump, the 
flow decelerates rapidly to a minimum at the trailing 
edge. Beyond the trailing edge, the flow accelerates 
again, and the displacement function d,(x,) ap- 
proaches zero asymptotically from below. The range 
of upstream and downstream influence increases 
as h increases. 

The induced pressure distribution is shown in 
Fig. 4. As expected, a favorable pressure gradient is 
developed in regions where the main-deck flow accel- 
erates, while an adverse pressure gradient is developed 
in regions where the flow decelerates. Thus, the press- 
ure rises gradually upstream of the hump to a 
maximum near the leading edge, and then decreases 
rapidly along the windward side of the hump, falling 
beiow the free-stream value to a minimum at the crest 
of the hump. On the leeward side of the hump, the 
pressure rises rapidly, overshooting the free-stream 
level, and then decreases asymptotically to zero from 
above far downstream of the hump. The induced press- 
ure perturbations are larger for humps of larger 
heights. Figure 4 indicates that the most likely place 



for separation to occur is the downstream end of the 
hump where the induced adverse pressure gradient is 
greatest. This is confirmed by the wall shcar~ stress 
distribution (Fig. 5). 

Figure 5 shows the wall shear-stress distribution. 
Upstream of the hump, the wall shear- stress decrcascs 
as the flow decelerates, to a minimum at the leading 

edge. Beyond the leading edge, the wall shear- stress 
rises drastically as the flow accelerates, reaching a 
maximum slightly ahead of the crest of the hump, and 
then decreases as the flow decelerates, to a minimum 
near the trailing edge of the hump. Beyond the trailing 
edge, the shear-stress increases and asymptotically 
approaches the unperturbed boundary layer solution 
from below. For /z = 3. the flow separates on the Icc- 

-6 -4 -2 0 2 4 6 8 

X, ---+ 

ward side of the hump, and thcrc IS ;I region of nega- 
tive shcar~-stress inside the separation bubble. The 
CLII'W for h = 3 indicates that the How separates 
around _Y, = 0.5 and reattaches at V, := I .X. 

Figure 6(a) shows the variation of the local heat 

transfer rate at the wall for Pr = 0.7. The local Nussclt 
number, defined in terms of 7,, -- T, . the thermal con- 
ductivity k and the length I!,. can be cxprcssed as 

w here 

(29) 

FIG. 4. Pressure distribution 
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-1 I I i f f I 1 1 1. ’ 1 f 3 

-6 -4 -2 0 2 4 6 8 

XI B 

FIG. 5. Wall shear-stress distribution. 

4.0 

2.0 

-2 0 

-4.0 
D 2 3 4 5 

5-- 

Fro. 6. (a) Local heat transfer rate for Pr = 0.7. (b) Local 
heat transfer rate for Pr = 8. 
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is obtained from the lowest order energy equation 
in the lower deck. Equation (29) indicates that 

NM, _ cm l/3 near 5 = 0. For humps of very small 
heights, equation (17) predicts that t”” Nu, is con- 
stant along the surface of the hump, that is, in the 
region 0 < 5 < 2. Thus, the axial variation of { ‘j3 kI 
has been plotted in Fig. 6(a), rather than the variations 
of Nu, . As expected, < ‘13 Nu, is very nearly constant 
in the region 0 < 5 g 2 for h = 0.1. As the height h of 
the protrusion is increased, the flow decelerates ahead 
of the protrusion and heat is convected away from the 
surface at a slower rate near the leading edge. The 
values of lit3 IV~J~ for h = I and 3 at the Ieading edge 
t r= 0 are, therefore, lower than the corresponding 
value for h = 0.1. The curves for h = 1 and 3 show 
that as the fluid accelerates along the ‘windward’ side 
of the hump, the local heat transfer rate increases 
above the Hat-plate value to a maximum slightly ahead 
of the center of the protrusion and decreases to a local 
minimum near the trailing edge as the fluid decelerates 
along the leeward side of the hump. For h = 1, the 
minimum occurs at the trailing edge CJ = 2. For h = 3, 
the flow separates ahead of the trailing edge and the 
minimum occurs upstream of the trailing edge, at the 
separation point, where the focal flow is similar to a 
reverb-stagnation point Bow. Just downstream of the 
separation point, the local wall heat transfer rate rises 
rapidly as the mixing of cold fluid with hot fluid 
induced by the recirculating eddy carries away heat 
from the surface at a faster rate. Ail the curves show 
a discontinuity in the wall heat flux at the traihng 
edge < = 2 due to the sudden step change in wall 
temperature. Downstream of the trailing edge, the 
wall heat flux changes sign as the hot fluid now trans” 
fers heat to the cooler wall. The magnitude of the wall 
heat flux is high near the trailing edge. The trailing 
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t 

t 

6 
1.15 

J 

(a) 1.13 A--J 
0 0.5 10 15 20 25 30 3.5 

h-+ 

l- 2,7/ 
(b) 2.5 'J 

0 0.5 1 0 1.5 2.0 2.5 3.0 35 

h--, 

FE. 7. (a) Total heat transfer rate from surface ofprotruston 
for Pr = 0.7. (b) Total heat transfer rate from surface 01 

protrusion for Pr = X. 

edge itself is a singular point, and for flows without 
separation, the wall heat flux is infinite at that point. 

Far downstream of the trailing edge, the wall heat flux 
decays algebraically to zero, as the thermal boundary 
layer grows in thickness. 

Figure 6(b) shows the variation of the local heat 
transfer rate for Pr = 8. The curves follow the same 
trend as in Fig. 6(a). The magnitude of the local heat 
transfer rates are, however, larger for Pr = 8, as the 
thermal boundary layer is thinner and the temperature 
gradients at the wall are larger. 

The total heat transfer rate, Q, from the surface ol 
the protrusion can be obtained by integrating equa- 
tion (29). lt may be expressed as 

e 
4T,,--T, 1 

= c 2;” ?Q, $ 

where 

Q, = 
r 

Nu, (0 d<. (31) 
i--o 

Figure 7(a) plots Q, as a function of the hump height 
/z for Pr = 0.7. It is seen that as h increases Q , increases 
to a maximum value around h = 1.25 and then 
decreases. This may be explained by referring to the 
local wall heat flux distribution (Fig. 6(a)). As the 
height of the protrusion is increased, the local heat 
transfer rates increase on the windward side of the 
hump (except in a small region close to the leading 
edge) as the flow accelerates and convects heat away 
from the surface at a faster rate. However, the local 
heat transfer rates decrease on the leeward side of 
the hump as the flow decelerates, falling below the 
corresponding values for a flat plate. For protrusions 

and L. S. YAO 

with heights h < 1.25. the net effect is an enhanccmcnt 
in the total heat transfer rate. For humps of Iargc~ 
heights. the adverse pressure gradient induced on the 
leeward side of the hump slows doun the llou- to such 
an extent that the local heat transfer rates decrcasc 

considerably in that region. This lcads to a decrcasc 
in the total heat transfer rate. The total heat transfci 
rate reaches a local minimum at /I 2 3.0. The flou first 
separates at h x 1.9. The region of scparatcd Ilow I\ 

initially very small, and the fluid in the recirculating 
region moves very slowly. Heat transfer in this almost 

stagnant region is mainly by conduction. Locally, the 
scparatcd region acts like an insulating layer. and the 
heat trnnsfcr rates arc reduced. As k is increased. thy 
si/e of the separated region increases and the fluid III 
the recirculating region begins to move faster. FOI- 
h D 3.0. the induced mixing caused hi the ~rtxxr- 

culation of fluid in the separated region leads to an 
increase in the total heat transfer rate. Since the cur- 

rent model is valid only for small-scale separation. the 
significance of the heat transfer enhancement due to 
the mixing induced by flow separation cannot be full> 
elucidated. The results, howcve~. indicate rhc trend 
clearly. The enhanocmcnt of heat tr:tnsfcr due to 

boundary layer separation is seen more clcnrly in Fig. 
7(b). which shows the variation 01’ Q, \cith il for 
PI-=X. 

I. 

2. 

3. 

4. 

5. 

6. 

7. 

X. 

9. 

IO. 

I I. 
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TRANSFERT THERMIQUE AUTOUR DUNE PETITE PROTUBERANCE CHAUDE 
SUR UNE PLAQUE 

R&un&On prtsente les resultats d’une etude a nombre de Reynolds Cleve du transfert thermique convectif 
autour d’une petite protuberance chaude sur une plaque plane. On analyse des excroissances de hauteur 
-L Re-5!8 et de longueur --L Rem ‘Is. Une solution analytique pour le transfert thermique est present&e 
pour des protuberances de hauteur extremement petite. Pour des hauteurs N 1 sur l’echelle de triple pont, 
on obtient une solution numerique. L’effet de la separation de la couche limite sur le flux thermique 
transferi. est ttudie. On trouve que la separation de l’ecoulement conduit a des flux thermiques elevts en 

aval du point de separation. 

WARMEUBERTRAGUNG IN DER UMGEBUNG EINER KLEINEN ERHEBUNG AUF 
EINER PLATTE 

Zusammenfassung-Der konvektive Warmeiibergang bei hohen Reynolds-Zahlen an einer kleinen 
beheizten Erhebung auf einer ebenen Platte wird untersucht. Mit Hilfe der “Triple-Deck-Theory” werden 
Erhebungen der Hiihe _ L Rem 5’8 und der Lange y L Rem w analvsiert. Eine analvtische Ldsung fur 
den B&hen Warmelbergang wird fur den Fall-einer verschwindend kleinen Hohe-der Erhebung-vor- 
gestellt. Fur Erhebungen der relativen Hiihe N 1 wird eine numerische Liisung ermittelt. Der EinfluB 
einer Grenzschichtabliisung auf den Warmelbergang wird untersucht, wobei sich stromab vom Ablosungs- 

punkt besonders hohe ijrtliche Wirmeiibergangskoeffizienten ergeben. 

TEI-IJIOI-IEPEHOC OKOJIO HEEOJIbB.IO~O HAI-PEBAEMOI-0 BbICTYI-IA HA IIJIACTHHE 

zitlWlTKIW--npeLW?WJlelibl pe3yJlbTaTbl HCCJIeLIOBaHHR KOHBeKTEBHOk TeMOOTlIiiqH OT He6onbmoro 
HarpesaeMoro BbIcTyna Ha ILIIOCKOii ILnaCTHHe npIl BbICOKEX ¶HCJUlX Peihionbnca. c HCUOJlb30BaHHeM 

Teopm apex ypOBHefi a~a.n~3HpyrOTcK Bbmymd BbmTOk -L Ree5’* H UHHOi? -L Rem”‘*. r@&u~O- 

KCeHO aHaJIHTH%CKOe peUIeIUie Iurn JIOKLUIbH0i-i HHTeHCHBHOCTE TellJIOOTJWIH Lurn BbIcTylIOB C HCYC- 

3alowe MaJIOii BbICOTOfi. )&In BbIcTytIOB BbIC0~0ii - 1 B E3MepeHHOM MUXUTK6e TeOpHH TpeX YpoBHeti 

nonyveH0 qHcnem0e pememie. kiccne~eTcn aWmHe 0Tpbma norpaHm~or0 cnoK Ha H~eminmmb 

TeMOtIepelIa’lH. HakeHo, ‘iTO OTpblB IIOTOKB IlpHBOnuT K BUCOKO8 JlOKi%JIbHOfi HHTeHCHBHOCTH T~IIJIO- 

nepe/JaYH BHH3 ITO TeSeHHEO OT TO’fKH OvbIB% 


